Attribute reduction for dynamic data sets

نویسندگان

  • Feng Wang
  • Jiye Liang
  • Chuangyin Dang
چکیده

Many real data sets in databases may vary dynamically. With such data sets, one has to run a knowledge acquisition algorithm repeatedly in order to acquire new knowledge. This is a very time-consuming process. To overcome this deficiency, several approaches have been developed to deal with dynamic databases. They mainly address knowledge updating from three aspects: the expansion of data, the increasing number of attributes and the variation of data values. This paper focuses on attribute reduction for data sets with dynamically varying data values. Information entropy is a common measure of uncertainty and has been widely used to construct attribute reduction algorithms. Based on three representative entropies, this paper develops an attribute reduction algorithm for data sets with dynamically varying data values. When a part of data in a given data set is replaced by some new data, compared with the classic reduction algorithms based on the three entropies, the developed algorithm can find a new reduct in a much shorter time. Experiments on six data sets downloaded from UCI show that the algorithm is effective and efficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy rough set based incremental attribute reduction from dynamic data with sample arriving

Attribute reduction with fuzzy rough set is an effective technique for selecting most informative attributes from a given realvalued dataset. However, existing algorithms for attribute reduction with fuzzy rough set have to re-compute a reduct from dynamic data with sample arriving where one sample or multiple samples arrive successively. This is clearly uneconomical from a computational point ...

متن کامل

Related family-based attribute reduction of covering information systems when varying attribute sets

In practical situations, there are many dynamic covering information systems with variations of attributes, but there are few studies on related family-based attribute reduction of dynamic covering information systems. In this paper, we first investigate updated mechanisms of constructing attribute reducts for consistent and inconsistent covering information systems when varying attribute sets ...

متن کامل

A Dominance Degree for Rough Sets and Its Application in Ranking Popularity

Rough set theory is used in data mining through complex learning systems and uncertain information decision from artificial intelligence. For multiple attribute decision making, rough sets employ attribute reduction to generate decisive rules. However, dynamic information databases, which record attribute values changing with time, raise questions to rough set based multiple attribute reduction...

متن کامل

Approximate Incremental Dynamic Analysis Using Reduction of Ground Motion Records

Incremental dynamic analysis (IDA) requires the analysis of the non-linear response history of a structure for an ensemble of ground motions, each scaled to multiple levels of intensity and selected to cover the entire range of structural response. Recognizing that IDA of practical structures is computationally demanding, an approximate procedure based on the reduction of the number of ground m...

متن کامل

Generalized Discernibility Function Based Attribute Reduction in Incomplete Decision Systems

A rough set approach for attribute reduction is an important research subject in data mining and machine learning. However, most attribute reduction methods are performed on a complete decision system table. In this paper, we propose methods for attribute reduction in static incomplete decision systems and dynamic incomplete decision systems with dynamically-increasing and decreasing conditiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013